A Quasi-likelihood Method for Fractal-Dimension Estimation

You-Gan Wang: CSIRO Mathematical and Information Sciences, P.O. Box 120,

Cleveland, Qld 4163, Australia

Yan-Xia Lin: School of Mathematics and Applied Statistics, University of Wollongong,
Northfields Ave, Wollongong, NSW 2522, Australia

M.D.E. Haywood: CSIRO Division of Marine Research, P.O. Box 120,
Cleveland, Qld 4163, Australia.

Abstract

This paper proposes a simple method of constructing quasi-likelihood functions

for dependent data based on conditional-mean-variance relationships, and applies the method
to estimating the fractal dimension from box-counting data. Simulation studies are carried out
to compare with traditional methods. We also analysed the real data from the fishing ground

in the Gulf of carpentaria, Australia.

1. Introduction

Fractal-dimension has been found useful in de-
scribing the “complexity” of random spatial
patterns (Taylor and Taylor, 1989; Ogata and
Katsura, 1991). There are various definitions
of a “fractal dimension” proposed in the litera-
ture, such as box dimension, Hausdorfl dimen-
sion, packing dimension. They may or may not
have the same value for a given fractal depend-
ing on the properties of the fractal (see Cutler,
1993).

Estimation of the dimension of a fractal
has become an important and interesting sta-
tistical problem(Roberts & Croain, 1996). The
box-counting data are often collected for esti-
mating the fractal dimension because of its ease
of application.

The quasi-likelihood (QL) method has
been found useful in parameter estimation, es-
pecially when the distributions cannot be fully
specified. However, the QL function for the
dependent data probably has not been received
much attention as it should (Wang, 1996). This
paper proposes a way of constructing QL func-
tions for dependent observations based on con-

ditional moments, which naturally generalizes
the original definition of the QL function for in-
dependent observations. This approach is then
applied with this method to estimate the di-
mension of a fractal from box-counting data.
The principle may be applied to other types
of dimensions as well. We compare the QL
with the least-squares method by analysing the
simulated data from random fractals. We also
analyse a data set collected from fishers in the
Gulf of Carpentaria, Australia, to establish a
relative capacity index for a selected area.

2. Quasi-likelihood

If ¥ is a random variable with E{Y} = u
and Var(Y) = V(p) (a known function), the
quasi-likelihood (QL) function for ¥, Qi Y},
is defined as {Wedderburn, 1974; McCullagh &
Nelder, 1989, p. 325)

Y —t
Y= i 1
Q=" 35 (1)
Y = (Yl 18 a vector of n independent
observations, the QL function is defined as
QU Y) = o0y Qus; Yy}, where {j)nx is the
corresponding mean vector of ¥.

971



The QL approach only requires specifi-
cation of the mean-variance relationship rather
than a full likelihood function. It has been
found extremely useful in modeling overdisper-
sion problems, and there has been extensive de-
velopment in this area, focusing on the case of
independent observations.

It is of practical importance to consider
the case of dependent data. McCullagh &
Nelder (1989, p.332-336) constructed a QL
function for dependent data. Unfortunately,
their QL function, in general, is not uniquely
determined, and it depends on the path of a
line integral.

In general, if ¥ is the vector of the
first ¢ observations, the log-likelihood function
of ¥ = (¥;)nx1 can be expressed as

T

S tog{ vy Uy

{m=1

(2)

Suppose p(i) is the conditional expectation

of BE(¥;|YU-1), and the conditional variance

Var(V[Y 1)) = v;{u(4)) can be expressed as

a function of pu{i). We can then define the

following conditional QL (strictly, the quasi-

conditional-likelihood) function for ¥,
. 2(#) Voo f

(pul0); v :] LS
Qi) = [ 2

Using the conditional argument as in (2), the

overall QL for ¥ can thus be defined as

(3)

T

Qi Y) =3 Qi(us Y1),
HE
By taking partial derivatives with respect to 3,
the QL function results in the following esti-
mating equations

Yi — p{i) ould)

< vi(p(t) 95,

The estimating equations can also be written

=0, for 1<j<p (4)

k

1

in a matrix form of

D'VHY —p)y =0, {5)

in which V' is a diagonal matrix with i-th ele-
ment v;, and p is the vector of {u(¢)}.x1.

Let F; be the standard filtration gener-
ated by ¥;,1 <7 <14, and

Yo u(d)
G m)

Clearly, (Z;,F;) is a martingale difference.
Standardizing this martingale difference re-
sults in the estimating equations given by (4).
Therefore, from the results of Godambe &
Heyde (1987, p.236) and Heyde (1987), the
QL estimating functions are optimal with re-
spect to both the fixed sample criteria and the
asymptotic criterion, and the central limit the-
orem holds for the estimates under appropriate
regularity conditions. Multivariate Gauss ap-
proximation can then be used to evaluate the
variances of the estimates (see also Liang and
Zegger, 1986; Godambe & Heyde, 1987; Lin
and Heyde, 1992 and 1997).

Let us now consider some examples to see
how the proposed QL approach works.
Ezample 1: First order autoregressive process

Consider a stochastic process of
Y= h(YUED g 4 ¢,

where A(.,.) is a smooth function, ¥y = ¢ and
€ are i.i.d. with mean 0 and variance o? {the
density function is unknown). The parame-
ter # is of interest. Clearly, p(l) = 0 and
p{iy = B(Y;|YE-1) = p(vE-1.6) for i > 2.
The QL estimating equation corresponding to
(4} is thus

SV~ RYEY 9)1ak(YE-1 6) /06 = 0.

i>1

In particular, if A(Y (1) §) = 6¥;_,, the
above equation becomes 3, ¥; (¥ — 8Yi_y),
which is the same as obtained by Heyde (1987)
and McCullagh & Nelder (1989, p.340-341).
By imposing assumptions on higher moments,

978



Heyde (1987) also obtained a combined esti-
mating function for o.

Fzample 2: Bienayme-Galion- Waison
branching process

Let Y5 = 1, and 3’;’_5_1 = Yz‘!l - }/;'!2 T Yi’y",
where ¥;;,1 < 7 € Y; are Lid., each with the
same offspring distribution, and are indepen-
dent of ¥;. The offspring distribution has a
mean §, which is of interest, and variance g%,

The conditional mean E(Yi|¥;) = 8Y;
and the condition variance Var(¥;.4{¥})
V.g?. Therefore, the estimating equation from
the generalised quasi-likelihood becomes

7

S (Y= 6Yi) =0

to=l
Godambe & Heyde (1987) obtained the same
result using some optimal estimation criteria.
This solution is also the maximum likelihood
estimate when the offspring has a power-series
distribution (Godambe & Heyde, 1987).

3. Estimation of Box Dimension

Box dimensicn, also known as capacity dimen-
sion, is the most widely used index for measur-
ing the complexity or irregularity of a fractal.
It gives an idea of the relative size of the object
which is too irreguiar to be measured by classi-
cal geometry. The dimension has also been de-
scribed as the amount of Euclidean space that
the fractal set fills or a measure of its rough-
ness (Hall and Wood, 1993). Fractal dimension
is analogous to the length of a line, or the area
of a square and allows comparisons to be made
with other fractals and with classical shapes.

Tor a spatial set the box-counting proce-
dure is carried out by covering the set F with
a collection of squares with a small side-length
5. Effectively, this means laying a grid of side
length & over the set and counting the minimum
number of squares (N} necessary to cover the
set. In general, this number is proportional to
the inverse of the grid size (Cutler, 1993), that
is, Ns ~ (1/8)Y, as § — 0, where d is the
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dimension of the object. The box-counting di-
mension S{F), is defined as

log{Ns(F))

AUEY = I Nogti/8)

§—0 (6}

In order to estimate the dimension for a

particular set I, N, may be obtained for a se-

ries of §;, 1 < ¢ < k. Here ¢,’s are in decreasing

order. When & is small, one can rely on the
following estimator

log{Ns, )

" Togler) )

B =

This method uses only the last observed
number and may not work well especially when
the convergence in (6) is slow (Hall and Wood,
1993). An alternative method is to use the re-
gression

yi = fo+ e + €,
where y; = log{Ns,) and z; = log{d;). The the
slope 3, represents the box-counting dimension
(Cutler 1993).

We now consider the case when §; = &
for some constant ¢ (0 < & < 1). We will use
N; for N5, when there is no confusion. Clearly,
N;y: is generated from a sum of N; abserva-
tions, each taking a value between 1 and 672
(in a 2-dimension space). If we let Ny = 1, we
may write N1y as Ny1+N;o+...+ N n,, where
N; ;1 <7 < N;are assumed to have the same
offspring distribution. This is similar to the
well known Bienayme-Galton-Watson branch-
ing process. The major difference is that it may
be inappropriate to assume N; ; for 1 < j <N
to be independent of each other. The offspring
distribution has a mean 8 = 6§, which is of
interest, and variance o?.

If a2 box is not empty, and when being
subdivided into m x m sub-boxes, we would
expect m? non-empty sub-boxes among these
m? sub-boxes. This suggest that E(Npq|V;) =
O, in which 8 = 677, Denote the conditional
variance Var(N;.1|N;} as V;. The estimating
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equation from the generalised quasi-likelihood

18

= 0. (8)

5 (Nigr = NN,
- Vi

L]

The conditional variance is

N;
Vi= Z Var{Ni,j} + ZCOV{NI‘J, Ni,g}.
=1 J#

It appears to be appropriate Lo assume that ¥}
is a quadratic function of N;. The averdisper-
sion parameters in the quadratic function have
to be estimated as well. lierative procedures
can then be used to update the parameter § and
re-estimating the overdispersion parameters. If
the number of data points is small, such proce-
dures are not possible. A simpler function of V;
has to be used. In particular, if we assume V;
is proportional to N?, we obtain an analytical
estimator

. E N /N
HQL — Zzw‘l!c m—;l/ ) ((}\3

4. A Simulation Study

Let us now consider the fractal set generated
from a unit square in two dimensions and a
vector of probabilities {py,---, pa) (Z_?:z py =
1.  The upit square is divided into nine
smaller squares and the probabilities p =
{(p1.p2. -+, po) are assigned to these squares.

The position of a point is determined by
an iterative procedure: {i) First randomly se-
lect a box of length 1/3 (each with probability
p;); {ii) Divide the selected box into nine sub-
boxes of length 1/3% (iii) Randomly select a
sub-box among the nine (each with probability
p;); and {iv) Further divide the seleced sub-box
into nine sub-boxes with length 1/3%, and re-
peat the procedures similar to (i) to (iii) until
the length of the sub-box is 1/3%. We let one,
iwo or three pis be 0 and the rest py’s have the
same probability. The box-dimension of this
type of fractal set is log(% — n)/log(3) where
n = 1, 2 or 3 is the number of p;’s with zero
probability.

Figure 1 shows three fractal sets with
3000 points corresponding to the cases n = [,
2 and 3. In order to estimate the dimension
via the box-counting method, a grid of side
length 1/3" is laid over the fractal set, for each
{{i= 1 ... 5), and the number of non-empty
hoxes, N, are obtained.

Table 1. Actual and estimated fractal dimensions
of the fractal sets shown in Figure 1. The
standard deviations are multiplied by 1000 and
given in brackeis.

n  Actual Ratio LS QL

1893 1537 (075 1.505(1.0) 1.602 (1.1)

1
§17T1 1524 (0.9) 1512 (1.3) 1.559 (1.3}

51631 1493 (1.2) 1495 (1.0) 1.500 (1.0}

Figure 11 Three fractal sets with box-dimension log(9 — n)/ log(3).

Each consists of 3080 points.

980



Table 1 shows the mean and standard de-
viation of the estimates by various estimators
based on 100 simulations. The ratio method
is based on equation (7). Interestingly enough,
it works quite well and is better than the LS
method in this case. Overall, it appears that
the QL methed is the best.

5. Data from the Northern Prawn Fish-
ery, Australia

The Northern Prawn Fishery has annual export
earnings between $100million and §150 millien.
Some aceas in the fishery produce more prawns
shan others. One of the reasons for this high
spatial variation in catches is that survival is
related to habitat type. In particular, areas of
rough bottom may be associated with higher
catch rates. We hypothesise that higher caich
rates are related to the complexity of the reef
areas rather than just the total area. Fishers
in the Northern Prawn Fishery use GPS plot-
ters for navigation and to record features such
as areas of high catch, reef, rough bottom etc.
We created a map of unirawlable ground within
the fishery by colleciing point data represent-
ing reef and rough bottom from 30 fishers and
converted this data to a grid with a cell size
of 200 x 200m. The data covered the whole of
the northern prawn fishery. We hope to use
box-dimension to measure the complexity for
each area, which may be used to explain the
variations in catches from different areas.

To demonstrate how this might work, we
selected a 1° degree square (60 > 60 nauti-
cal miles) having an area of 12254 km? to the
northeast of Vanderlin Island {Figure 2). Areas
regarded as reef or rough bottom {untrawlable
ground) covered 425 km? of the selected study
area.

The sample area was sequentially divided
up into 4, 16, 64, 256, 1024 and 4096 boxes
with the number of boxes containing fractal
elements being (4, 15, 56, 197, 655, 1008).
The ratic method produces the estimate as
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Figure 2: The study area divided into 4096 hoxes
with points showing the reef and rough bottom, in
the Northern Prawn Fishery, Australia.

o~
i~

log{1908}/(5log(2)} 1.816. The estimates
by the regression method and the QL method
are 1.790, and 1.786. In this case, these two
cstimates are not very different. However, we
would expect differences to apply to other areas
because these two methods differ in general, as

the simulation resuits indicate.
6. Discussion

We have introduced the QL method for de-
pendent data and applied it in the context of
fractal-dimension estimation. The study pre-
sented here is only a prelimary one. Further
exploration of the QL approach while account-
ing for the correlations between observed nam-
bers in each sub-box is of great interest. We
intend to establish a fracial dimension for each
stock area in the Northern Prawn Fishery, and
investigate the possible relationship with the
annual catches in these areas.
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